The potential of Barringtonia asiatica Biopesticide from Papua to Eradicate Pests in Aquaculture

English language

  • Achmad Suhermanto
  • Fabian Ardianta Dinas Kelautan dan Perikanan Kabupaten Sumbawa
  • Murtihapsari Murtihapsari Universitas Negeri Papua
  • Achmad Sofian Politeknik Kelautan dan Perikanan Pangandaran
Keywords: Aquaculture, Barringtonia asiatica, ; fish poison tree, pests, saponins

Abstract

Saponins are compounds derived from plants that are currently widely used in aquaculture for aquatic pest control. In this study, potential saponin components extracted from fish poison tree (Barringtonia asiatica), which is widely dispersed in tropical areas worldwide, were characterized. Saponin properties were obtained from seeds and leaves by extraction and spectrophotometric methods. To test its properties, four different concentrations of saponin extracts, namely 10 ppm, 20 ppm, 30 ppm, and 40 ppm, were applied in four trials containing 20 tilapias each. An unexpected result was obtained and proved that the saponins extracted from the seeds of the fish poison tree proved to be significantly more effective than the saponins extracted from the peel of its fruit to eradicate pest in pond. The results also revealed that the lethal dose of saponins reached higher level at a concentration of 40 ppm. It can be concluded that fish poison tree as a poisonous tree plays an important role in ensuring the sustainability of saponin stocks. The use of natural materials such as fish poison tree as a biopesticide has the potential to minimize environmental damage and reduce costs for aquaculture.

References

Ahmad, A., Sheikh Abdullah, S. R., Hasan, H. A., Othman, A. R., & Ismail, N. ‘Izzati. (2021). Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. Journal of Environmental Management, 287(January), 112271. http://doi.org/10.1016/j.jenvman.2021.112271

Ahmed, N., Thompson, S., & Turchini, G. M. (2020). Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture. Food Security, 12(6), 1253–1267. http://doi.org/10.1007/s12571-020-01090-3

Akbar, J. (2020). Pemeliharaan Ikan Gabus (Channa striata) dalam Kolam Sulfat Masam. Journal of Chemical Information and Modeling (Vol. 53). Lambung Mangkurat University Press.

Burton, R. A., Wood, S. G., & Owen, N. L. (2003). Elucidation of a new oleanane glycoside from Barringtonia asiatica. Arkivoc, 2003(13), 137–146. http://doi.org/10.3998/ark.5550190.0004.d14

Castillo-Ruiz, M., Cañon-Jones, H., Schlotterbeck, T., Lopez, M. A., Tomas, Á., & San Martín, R. (2018). Safety and efficacy of quinoa (Chenopodium quinoa) saponins derived molluscicide to control of Pomacea maculata in rice fields in the Ebro Delta, Spain. Crop Protection, 111(April), 42–49. http://doi.org/10.1016/j.cropro.2018.04.016

Clearwater, S. J., Hickey, C. W., & Martin, M. L. (2008). Overview of potential piscicides and molluscicides for controlling aquatic pest species in New Zealand. Science for Conservation, (283), 1–74.

Das, S. K., Sarkhel, C., Mandal, A., & Dinda, R. (2017). Piscicides in Tropical Freshwater Aquaculture–an Overview. Indian Journal of Animal Health, 56(1), 11–30.

Duke, S. O., Cantrell, C. L., Meepagala, K. M., Wedge, D. E., Tabanca, N., & Schrader, K. K. (2010). Natural toxins for use in pest management. Toxins, 2(8), 1943–1962. http://doi.org/10.3390/toxins2081943

Ferdous, Z., Rana, K. M. S., & Habib, M. A. Bin. (2018). Piscicidal effects of plant seed extracts on predatory fish , Channa punctatus ( Teleostei : Channidae ) reared in aquarium, 6(4), 1232–1236.

Francis, G., Makkar, H. P. S., & Becker, K. (2001). Effects of Quillaja saponins on growth, metabolism, egg production and muscle cholesterol in individually reared Nile tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 129(2), 105–114. http://doi.org/10.1016/S1532-0456(01)00189-2

Francis, G., Makkar, H. P. S., & Becker, K. (2002). Dietary supplementation with a Quillaja saponin mixture improves growth performance and metabolic efficiency in common carp (Cyprinus carpio L.). Aquaculture, 203(3-4), 311–320. http://doi.org/10.1016/S0044-8486(01)00628-7

Francis, G., Makkar, H. P. S., & Becker, K. (2005). Quillaja saponins - A natural growth promoter for fish. Animal Feed Science and Technology, 121(1-2), 147–157. http://doi.org/10.1016/j.anifeedsci.2005.02.015

Fredricks, K. T., Hubert, T. D., Amberg, J. J., Cupp, A. R., & Dawson, V. K. (2021). Chemical Controls for an Integrated Pest Management Program. North American Journal of Fisheries Management, 41(2), 289–300. http://doi.org/10.1002/nafm.10339

Harikrishnan, R., Rani, M. N., & Balasundaram, C. (2003). Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture, 221(1-4), 41–50. http://doi.org/10.1016/S0044-8486(03)00023-1

Herlt, A. J., Mander, L. N., Pongoh, E., Rumampuk, R. J., & Tarigan, P. (2002). Two major saponins from seeds of Barringtonia asiatica: Putative antifeedants toward Epilachna sp. larvae. Journal of Natural Products, 65(2), 115–120. http://doi.org/10.1021/np000600b

Maqsood, S., Samoon, M. H., & Singh, P. (2009). Immunomodulatory and growth promoting effect of dietary levamisole in cyprinus carpio fingerlings against the challenge of aeromonas hydrophila. Turkish Journal of Fisheries and Aquatic Sciences, 9(1), 111–120.

Mojica, E. R. E., & Micor, J. R. L. (2007). Bioactivity study of Barringtonia asiatica (Linnaeus) Kurz. Seed aqueous extract in Artemia salina. International Journal of Botany, 3(3), 325–328. http://doi.org/10.3923/ijb.2007.325.328

Montes De Oca, D. P., Lovera, R., & Cavia, R. (2017). Where do Norway rats live? Movement patterns and habitat selection in livestock farms in Argentina. Wildlife Research, 44(4), 324–333. http://doi.org/10.1071/WR16219

Mrozik, W., Vinitnantharat, S., Thongsamer, T., Pansuk, N., Pattanachan, P., Thayanukul, P., … Werner, D. (2019). The food-water quality nexus in periurban aquacultures downstream of Bangkok, Thailand. Science of the Total Environment, 695, 133923. http://doi.org/10.1016/j.scitotenv.2019.133923

Natawigena, W. D., Dono, D., & Febriana, I. (2018). Toksisitas ekstrak biji Barringtonia asiatica (Lecythidaceae) terhadap mencit putih (Mus musculus Strain DDY). Jurnal Agro, 5(2), 76–85. http://doi.org/10.15575/3589

Ng’ambi, J. W., Li, R., Mu, C., Song, W., & Wang, C. (2017). The immunostimulatory effect of saponin immersion against Vibrio alginolyticus in swimming crab Portunus trituberculatus. Aquaculture International, 25(4), 1667–1678. http://doi.org/10.1007/s10499-017-0139-9

Quigley, D. T. G., Gainey, P. A., & Dinsdale, A. (2014). First records of Barringtonia asiatica (Lecythidaceae) from UK waters and a review of north-western European records . New Journal of Botany, 4(2), 107–109. http://doi.org/10.1179/2042349714y.0000000042

Ragasa, C. Y., Espineli, D. L., & Shen, C. C. (2014). Cytotoxic Triterpene from Barringtonia asiatica. Pharmaceutical Chemistry Journal, 48(8), 529–533. http://doi.org/10.1007/s11094-014-1144-1

Rairakhwada, D., Pal, A. K., Bhathena, Z. P., Sahu, N. P., Jha, A., & Mukherjee, S. C. (2007). Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles. Fish and Shellfish Immunology, 22(5), 477–486. http://doi.org/10.1016/j.fsi.2006.06.005

Rumampuk, R. J., Pongoh, E. J., Tarigan, P., Herlt, A. J., & Mander, L. N. (2010). A TRITERPENE ESTER SAPONIN FROM THE SEED OF Barringtonia asiatica. Indonesian Journal of Chemistry, 3(3), 149–155. http://doi.org/10.22146/ijc.21880

Sourav, M. S. H. (2019). Barringtonia asiatica (Lecythidaceae), a new record for the flora of Bangladesh. Tropical Plant Research, 6(2), 335–337. http://doi.org/10.22271/tpr.2019.v6.i2.043

Suhermanto, A., Andayani, S., & Maftuch. (2013). PENGARUH TOTAL FENOL TERIPANG PASIR ( Holothuria scabra ) TERHADAP RESPON IMUN NON SPESIFIK IKAN MAS ( Cyprinus carpio ), 13(2), 225–233.

Suhermanto, A., Andayani, S., & Maftuch, M. (2011). Pemberian Total Fenol Teripang Pasir (Holothuria scabra) untuk Meningkatkan Leukosit dan Diferensial Leukosit Ikan Mas (Cyprinus carpio) yang Diinfeksi Bakteri Aeromonas hydrophila. Indonesian Journal of Marine Science and Technology, 4(2), 150–157.

Umaru, I. J. (2018). A Review on The Phytochemical and Pharmacological Properties Barringtonia Asiatica. Drug Designing & Intellectual Properties International Journal, 2(3), 149–152. http://doi.org/10.32474/ddipij.2018.02.000138

Umaru, I. J., Badruddin, F. A., & Umaru, H. A. (2019). Phytochemical Screening of Essential Oils and Antibacterial Activity and Antioxidant Properties of Barringtonia asiatica (L) Leaf Extract. Biochemistry Research International, 2019. http://doi.org/10.1155/2019/7143989

Umaru, K. I. (2020). ANTIFUNGAL STUDY OF CRUDE EXTRACT OF Barringtonia asiatica ( L .) Kurtz In-vitro ANTIFUNGAL STUDY OF CRUDE EXTRACT OF Barringtonia asiatica ( L .) Kurtz AGAINST FUNGAL PATHOGENIC STRAINS, 5(May), 7–12.

Yadav, I. C., & Devi, N. L. (2017). Pesticides Classification and its Impact on Environment. International Journal of Current Microbiology and Applied Sciences, 8(03), 1889–1897. http://doi.org/10.20546/ijcmas.2019.803.224

Published
2022-05-24
How to Cite
Suhermanto, A., Ardianta, F., Murtihapsari, M., & Sofian, A. (2022). The potential of Barringtonia asiatica Biopesticide from Papua to Eradicate Pests in Aquaculture . Jurnal Airaha, 11(01), 157 - 166. https://doi.org/10.15578/ja.v11i01.335
Section
Articles